Sistemas de ecuaciones

Sistemas de ecuaciones con dos incógnitas

sistema

La solución del sistema es un par de números x1, y1 , tales que reemplazando x por x1 e y por y1, se satisfacen a la vez ambas ecuaciones.

sistemax = 2, y = 3

solución

Sistemas de ecuaciones equivalentes

Si a ambos miembros de una ecuación de un sistema se les suma o se les resta una misma expresión, el sistema resultante es equivalente.

sistemasistema x = 2, y = 3

Si multiplicamos o dividimos ambos miembros de las ecuaciones de un sistema por un número distinto de cero, el sistema resultante es equivalente.

sistemasistema x = 2, y = 3

Si sumamos o restamos a una ecuación de un sistema otra ecuación del mismo sistema, el sistema resultante es equivalente al dado.

sistemasistema x = 2, y = 3

Sin en un sistema se sustituye una ecuación por otra que resulte de sumar las dos ecuaciones del sistema previamente multiplicadas o divididas por números no nulos, resulta otro sistema equivalente al primero.

sistemas equivalentes

sistemas equivalentes

Si en un sistema se cambia el orden de las ecuaciones o el orden de las incógnitas, resulta otro sistema equivalente.

sistemas

sistemas

Clasificación de sistemas de ecuaciones por el número de soluciones

Sistema compatible determinado

Tiene una sola solución.

sistemax = 2, y = 3

Gráficamente la solución es el punto de corte de las dos rectas.

gráfica

Sistema compatible indeterminado

El sistema tiene infinitas soluciones.

sistema

Gráficamente obtenemos dos rectas coincidentes. Cualquier punto de la recta es solución.

recta

Sistema incompatible

No tiene solución

sistema

Gráficamente obtenemos dos rectas paralelas.

rectas