Límites laterales

Diremos que el límite de una función f(x) cuando x tiende hacia a por la izquierda es L, si y sólo si para todo ε > 0 existe δ > 0 tal que si x pertenece (a − δ, a ), entonces |f(x) - L| <ε.

Límicte por la izquierda

Diremos que el límite de una función f(x) cuando x tiende hacia a por la derecha es L , si y sólo si para todo ε > 0 existe δ > 0 tal que si x pertenece (a, a + δ), entonces |f(x) - L| < ε.

Límite por la derecha

El límite de una función en un punto si existe, es único.

Función a trozos

Límites laterales

limite por la izquierda

limite por la izquierda

En este caso vemos que el límite tanto por la izquierda como por la derecha cuando x tiende a 2 es 4.

El límite de la función es 4 aunque la función no tenga imagen en x = 2.

Para calcular el límite de una función en un punto, no nos interesa lo que sucede en dicho punto sino a su alrededor.

Ejemplo

Dada la función:

función

Hallar límite.

limite por la izquierda

limite por la derecha

Como no coinciden los límites laterales, la función no tiene límite en x = 0.