Binomio

Un binomio es un polinomio que consta de dos monomios.

P(x) = 2x2 + 3x


Binomio al cuadrado

Un binomio al cuadrado es igual es igual al cuadrado del primer término más, o menos, el doble producto del primero por el segundo más el cuadrado segundo.

(a + b)2 = a2 + 2 · a · b + b2

(x + 3)2 = x 2 + 2 · x ·3 + 3 2 = x 2 + 6 x + 9

(a − b)2 = a2 − 2 · a · b + b2

(2x - 3)2 = (2x)2 + 2 · 2x · 3 + 3 2 = 4x2 + 12 x + 9


Binomio al cubo

Un binomio al cubo es igual al cubo del primero más, o menos, el triple del cuadrado del primero por el segundo más el triple del primero por el cuadrado del segundo más, o menos, el cubo del segundo.

(a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3

(x + 3)3 = x 3 + 3 · x2 · 3 + 3 · x· 32 + 33 =

= x 3 + 9x2 + 27x + 27

(a − b)3 = a3 − 3 · a2 · b + 3 · a · b2 − b3

(2x - 3)3 = (2x)3 - 3 · (2x)2 ·3 + 3 · 2x· 32 - 33 =

= 8x 3 - 36 x2 + 54 x - 27

Diferencia de cuadrados

Una diferencia de cuadrados es igual a una suma por diferencia.

a2 − b2 = (a + b) · (a − b)

4x2 − 25 = (2x)2 − 52 = (2x + 5) · (2x - 5)


Suma de cubos

a3 + b3 = (a + b) · (a2 − ab + b2)

8x3 + 27 = (2x + 3) (4x2 - 6x + 9)

Diferencia de cubos

a3 − b3 = (a − b) · (a2 + ab + b2)

8x3 − 27 = (2x − 3) (4x2 + 6x + 9)

Producto de dos binomios que tienen un término común

(x + a) (x + b) = x2 + ( a + b) x + ab

(x + 2) (x + 3) =

= x2 + (2 + 3)x + 2 · 3 =

= x2 + 5x + 6


Binomio de Newton

La fórmula que nos permite hallar las potencias de un binomio se conoce como binomio de Newton.

binomio

Podemos observar que:

El número de términos es n+1.

Los coeficientes son números combinatorios que corresponden a la fila enésima del triángulo de Tartaglia.

triángulo de Tartaglia

En el desarrollo del binomio los exponentes de a van disminuyendo, de uno en uno, de n a cero; y los exponentes de b van aumentando, de uno en uno, de cero a n, de tal manera que la suma de los exponentes de a y de b en cada término es igual a n.

En el caso que uno de los términos del binomio sea negativo, se alternan los signos positivos y negativos.

binomio

binomio

binomio

binomio

binomio

binomio





  • Subir

Cursos de Matemáticas e Inglés