Distribución binomial

Una distribución binomial o de Bernoulli tiene las siguientes características:

1. En cada prueba del experimento sólo son posibles dos resultados: éxito y fracaso.

2.La probabilidad de éxito es constante, es decir, que no varía de una prueba a otra. Se representa por p.

3.La probabilidad de fracaso también es constante, Se representa por q,

q = 1 − p

3.El resultado obtenido en cada prueba es independiente de los resultados obtenidos anteriormente.

5.La variable aleatoria binomial, X, expresa el número de éxitos obtenidos en las n pruebas. Por tanto, los valores que puede tomar X son: 0, 1, 2, 3, 4, ..., n.

La distribución bimomial se expresa por B(n, p)

Cálculo de probabilidades en una distribución binomial

binomial

n es el número de pruebas.

k es el número de éxitos.

p es la probabilidad de éxito.

q es la probabilidad de fracaso.

El número combinatorio número combinatorio


Ejemplo

La última novela de un autor ha tenido un gran éxito, hasta el punto de que el 80% de los lectores ya la han leido. Un grupo de 4 amigos son aficionados a la lectura:

1. ¿Cuál es la probabilidad de que el grupo hayan leido la novela 2 personas?

n = 4

p = 0.8

q = 0.2

B(4, 0.8)

binomial

2.¿Y cómo máximo 2?

binomial

binomial


Parámetros de la distribución binomial

Media

media

Varianza

varianza

Desviación típica

desviación típica

Ejemplo

La probabilidad de que un artículo producido por una fabrica sea defectuoso es 0.02. Se envió un cargamento de 10.000 artículos a unos almacenes. Hallar el número esperado de artículos defectuosos, la varianza y la desviación típica.

solución

solución

solución