Combinaciones

Se llama combinaciones de m elementos tomados de n en n (m ≥ n) a todas las agrupaciones posibles que pueden hacerse con los m elementos de forma que:

No entran todos los elementos.

No importa el orden.

No se repiten los elementos.

Combinaciones

También podemos calcular las combinaciones mediante factoriales:

Combinaciones

Las combinaciones se denotan por variaciones

Ejemplos

1. Calcular el número de combinaciones de 10 elementos tomados de 4 en 4.

Combinaciones

Combinaciones

2. En una clase de 35 alumnos se quiere elegir un comité formado por tres alumnos. ¿Cuántos comités diferentes se pueden formar?

No entran todos los elementos.

No importa el orden: Juan, Ana.

No se repiten los elementos.

Combinaciones


Combinaciones con repetición

Las combinaciones con repetición de m elementos tomados de n en n (m ≥ n), son los distintos grupos formados por n elementos de manera que:

No entran todos los elementos.

No importa el orden.

se repiten los elementos.

Combinaciones con repetición

Ejemplo

En una bodega hay en un cinco tipos diferentes de botellas. ¿De cuántas formas se pueden elegir cuatro botellas?

No entran todos los elementos. Sólo elije 4..

No importa el orden. Da igual que elija 2 botellas de anís y 2 de ron, que 2 de ron y 2 de anís.

se repiten los elementos. Puede elegir más de una botella del mismo tipo.

solución





  • Subir

Cursos de Matemáticas e Inglés